Acute adaptation of the vestibuloocular reflex: signal processing by floccular and ventral parafloccular Purkinje cells.

نویسندگان

  • Y Hirata
  • S M Highstein
چکیده

The gain of the vertical vestibuloocular reflex (VVOR), defined as eye velocity/head velocity was adapted in squirrel monkeys by employing visual-vestibular mismatch stimuli. VVOR gain, measured in the dark, could be trained to values between 0.4 and 1.5. Single-unit activity of vertical zone Purkinje cells was recorded from the flocculus and ventral paraflocculus in alert squirrel monkeys before and during the gain change training. Our goal was to evaluate the site(s) of learning of the gain change. To aid in the evaluation, a model of the vertical optokinetic reflex (VOKR) and VVOR was constructed consisting of floccular and nonfloccular systems divided into subsystems based on the known anatomy and input and output parameters. Three kinds of input to floccular Purkinje cells via mossy fibers were explicitly described, namely vestibular, visual (retinal slip), and efference copy of eye movement. The characteristics of each subsystem (gain and phase) were identified at different VOR gains by reconstructing single-unit activity of Purkinje cells during VOKR and VVOR with multiple linear regression models consisting of sensory input and motor output signals. Model adequacy was checked by evaluating the residual following the regressions and by predicting Purkinje cells' activity during visual-vestibular mismatch paradigms. As a result, parallel changes in identified characteristics with VVOR adaptation were found in the prefloccular/floccular subsystem that conveys vestibular signals and in the nonfloccular subsystem that conveys vestibular signals, while no change was found in other subsystems, namely prefloccular/floccular subsystems conveying efference copy or visual signals, nonfloccular subsystem conveying visual signals, and postfloccular subsystem transforming Purkinje cell activity to eye movements. The result suggests multiple sites for VVOR motor learning including both flocculus and nonflocculus pathways. The gain change in the nonfloccular vestibular subsystem was in the correct direction to cause VOR gain adaptation while the change in the prefloccular/floccular vestibular subsystem was incorrect (anti-compensatory). This apparent incorrect directional change might serve to prevent instability of the VOR caused by positive feedback via the efference copy pathway.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chronic changes in inputs to dorsal Y neurons accompany VOR motor learning.

Gain changes in the vestibuloocular reflex (VOR) during visual-vestibular mismatch stimulation serve as a model system for motor learning. The cerebellar flocculus and its target neurons in the brain stem (FTN) are candidates for the storage of these novel VOR gains. We have recently studied the changes in vertical flocculus Purkinje cells after chronic VOR motor learning. Recently we recorded ...

متن کامل

Context contingent signal processing in the cerebellar flocculus and ventral paraflocculus during gaze saccades.

The vestibuloocular reflex (VOR) functions to stabilize gaze when the head moves. The flocculus region (FLR) of the cerebellar cortex, which includes the flocculus and ventral paraflocculus, plays an essential role in modifying signal processing in VOR pathways so that images of interest remain stable on the retina. In squirrel monkeys, the firing rate of most FLR Pk cells is modulated during V...

متن کامل

Partial ablations of the flocculus and ventral paraflocculus in monkeys cause linked deficits in smooth pursuit eye movements and adaptive modification of the VOR.

The vestibuloocular reflex (VOR) generates compensatory eye movements to stabilize visual images on the retina during head movements. The amplitude of the reflex is calibrated continuously throughout life and undergoes adaptation, also called motor learning, when head movements are persistently associated with image motion. Although the floccular-complex of the cerebellum is necessary for VOR a...

متن کامل

Multiple subclasses of Purkinje cells in the primate floccular complex provide similar signals to guide learning in the vestibulo-ocular reflex.

The neural "learning rules" governing the induction of plasticity in the cerebellum were analyzed by recording the patterns of neural activity in awake, behaving animals during stimuli that induce a form of cerebellum-dependent learning. We recorded the simple- and complex-spike responses of a broad sample of Purkinje cells in the floccular complex during a number of stimulus conditions that in...

متن کامل

Flocculus Purkinje Cell Signals in Mouse Cacna 1 a Calcium Channel Mutants of 2 Escalating Severity

23 24 Mutation of the Cacna1a gene for the P/Q (CaV2.1) calcium channel invariably 25 leads to cerebellar dysfunction. The dysfunction has been attributed to disrupted 26 rhythmicity of cerebellar Purkinje cells, but the hypothesis remains unproven. If irregular 27 firing rates cause cerebellar dysfunction, then the irregularity and behavioral deficits 28 should co-vary in a series of mutant st...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 85 5  شماره 

صفحات  -

تاریخ انتشار 2001